Assignment 10

Complex Numbers; Quadratic Equations in One Variable; Plane Figures

Textbook Assignment: Chapters 15 (164-166), 16, 17 (181-186)

- 10-1. The coefficient of the imaginary part of the sum of two complex numbers is equal
 - 1. sum of the real and imaginary coefficients of the two complex numbers
 - 2. sum of the real coefficients of the imaginary parts of the two complex numbers
 - 3. difference of the imaginary coefficients of the two complex numbers
 - 4. product of the imaginary coefficients of the two complex numbers
- 10-2. What is the sum of 1 + i and 7 6i?
 - 1. -6 + 7i
 - 2.2 + i
 - 3.8 5i
 - 4.8 61
- 10-3. What is the product of $1 + \sqrt{-7}$ and $-3 - \sqrt{-11}$?
 - 1. $-3 + \sqrt{77} i(3\sqrt{7} + \sqrt{11})$ 2. $-3 \sqrt{77} + i(3\sqrt{7} + \sqrt{11})$ 3. $-3 + \sqrt{77} + i(3\sqrt{7} \sqrt{11})$ 4. $-3 \sqrt{77} + i(-3\sqrt{7} + \sqrt{11})$
- 10-4. What is the simplified product of
 - 3 + i and 3 i?
 - 1.8
 - 2. 9 + i^2
 - 3.9 6i
 - 4. 10
- 10-5. How is the conjugate of a complex number formed?
 - 1. By changing the sign of the real part
 - 2. By changing the sign of the imaginary
 - 3. By multiplying the real part by i
 - 4. By multiplying the imaginary part by i
- 10-6. Both the sum and product of two conjugate complex numbers are real numbers.

- 10-7. Which of the following numbers can be represented as the product of two conjugate complex numbers?
 - 1.3 + 121
 - 2. 8 12i
 - 3.8
 - 4. 12i
- 10-8. When dividing one complex number by another you should first multiply the
 - 1. dividend and divisor by the conjugate of the dividend
 - 2. dividend and divisor by the conjugate of the divisor
 - 3. dividend and divisor by i
 - 4. dividend and divisor by 1 i
- 10-9. Which of the following numbers is equal tο

$$\frac{8-i}{2+i}$$
?

- 1.1 + i
- 2.1 3i
- 3.2 + 2i
- 4.3 2i
- 10-10. When the expression

$$\frac{2+1}{1}$$

is simplified, what is the result?

- 1. 2i
- 3.2i + 1
- 2.1 2i
- 4.2i 1
- 10-11. What determines the degree of an equation that contains various powers of x, but no other variables?
 - 1. The number of terms in the equation
 - 2. The number of different powers of x that appear in the equation
 - 3. The highest power of x that appears in the equation
 - 4. The coefficient of the highest power of x that appears in the equation

10-12. What is the coefficient of the constant term in the equation

$$2x^0 - 5x^2 + 3x^1 = 0$$
?

- 1. +2
- 2. -5
- 3. +3
- 4. 0
- 10-13. What are the coefficients of the equa-

$$\frac{3}{2}(x^2 - 12) + 2x = \frac{x^2 - 38}{2} + (x - 1)$$

when it is simplified and put into general form?

- 1. a = 1, b = -1, c = 2
- 2. a = 1, b = 1, c = 2
- 3. a = 1, b = 2, c = -14. a = 1, b = -2, c = 1
- 10-14. The expression $ax^2 + bx + c = 0$ represents a quadratic equation except when
 - 1. a = c
 - 2. a = 0
 - 3. b = c
 - 4. b = 0
- 10-15. If an equation contains only the single variable x, the number of solutions is determined by the
 - 1. number of terms in the equation
 - 2. number of different powers of x that appear in the equation
 - 3. highest power of x that appears in the equation
 - 4. coefficient of the highest power of x that appears in the equation
- 10-16. The equation $x^3 8 = 0$ has how many roots?
 - 1. One
 - 2. Two
 - 3. Three
 - 4. Four
- 10-17. Which of the following values of x are roots of the equation

$$x^2 - 8x + 15 = 0$$
?

- 1. x = 1 and x = -7
- 2. x = 2 and x = 4
- 3. x = -2 and x = 4
- 4. x = 3 and x = 5
- 10-18. The factoring method of solving quadratic equations is based upon the fact that
 - 1. every equation can be factored
 - 2. every quadratic equation can be factored
 - 3. the product of two factors is zero only if at least one of the factors is zero
 - 4. the product of two factors is always greater than zero

- 10-19. What are the two roots of $x^2 100 = 0$?
 - 3, 10, 10 1, 2, -50
 - 2. 5, 20 4. 10, -10
- 10-20. Assume that you wish to solve a second degree equation by the factoring method. What is your next step after you separate the equation into its factors?
 - 1. Set the product of the factors equal to zero and solve for x.
 - 2. Set each factor equal to zero and solve both equations for x.
 - 3. Set the factors equal to each other and solve for x.
 - 4. Set the factors equal to the original equation and solve for x.
- 10-21. To solve the quadratic equation

$$3x^2 - 17x - 28 = 0$$

by the factoring method, the equation is first factored into

- 1. (x 7)(3x + 4) = 0
- 2. (x + 7)(3x 4) = 0
- 3. (3x 7)(x + 4) = 04. (3x + 7)(x 4) = 0
- 10-22. One solution of the equation $x^2 - 0.07x + 0.0006 = 0$ is x = 0.01.
- 10-23. What are the roots when the quadratic equation

$$2x - 48 = -x^2$$
is factored?

1. 12. 4

- 3. 4, -12
- 2. 6, 8
- 4. -8, 6
- 10-24. What is the relationship between the first-degree term and the constant term in the perfect square trinomial

$$x^2 + bx + c = 0$$
?

- 1. The constant term is the square of the coefficient of the first-degree
- 2. The constant term is the square of $\frac{1}{2}$ the coefficient of the first degree term.
- 3. The coefficient of the first-degree term is the square root of the constant term.
- 4. There is no predictable relationship between the first-degree term and the constant term.
- 10-25. What happens to the original constant term of a quadratic equation when you solve the equation by completing the square?
 - 1. It is squared.
 - 2. It is divided by 2 and squared.
 - 3. It is multiplied by half the coefficient of the x term.
 - 4. It is placed on the right side of the equation.

10-26. When you solve the equation

$$x^2 + 8x - 9 = 0$$

by the method of completing the square, what number do you add to both sides of the equation after you put the constant term in its proper position?

- 1. 8
- 2. 16 3. 32
- 4. 64

10-27. When you solve a quadratic equation by the method of completing the square, you must first make the coefficient of the x2 term equal to

- 1. zero
- 2. one
- 3. half the coefficient of the x term
- 4. the square of half the coefficient of the x term

10-28. When the quadratic equation

$$x^2 + 6x - 1 = 0$$

is solved by completing the square, what results after taking the square root of both sides of the equation?

- 1. $x + 3 = \sqrt{10}$
- 2. $x + 3 = \pm 10$
- 3. $x + 3 = \pm \sqrt{10}$ 4. $(x + 3)^2 = \sqrt{10}$

10-29. When the quadratic equation $x^2 + 3x = \frac{1}{3}$ is solved by completing the square, what are the roots of the equation?

- 1. $\frac{3}{2} \pm \frac{\sqrt{31}}{3}$ 3. $\pm \frac{3}{2}$ 2. $\frac{3}{2} \pm \frac{31}{12}$ 4. $-\frac{3}{2} \pm \frac{1}{2} \sqrt{\frac{31}{3}}$

10-30. Completing the square, like factoring, cannot be used to solve every quadratic equation.

10-31. What number appears under the radical sign when you use the quadratic formula to solve the equation

$$2x^2 - 11x + 1 = 0$$
?

- 1. 37
- 3. 113
- 2. 81
- 4. 146

10-32. When the equation $ax^2 + bx + c = 0$ is solved by completing the square, the resulting quadratic formula represents the solution of all quadratics.

10-33. Which of the following is derived when

$$3x^2 - 5x + 4 = 0$$

is solved?

- 1. $\frac{5 + i \sqrt{23}}{6}$ 3. $\frac{5 \pm i \sqrt{23}}{6}$
- 2. $\frac{5 i \sqrt{23}}{6}$ 4. $\frac{5 \pm \sqrt{73}}{6}$

10-34. Which of the following may be used to solve the quadratic equation

$$2x^{2} - x - 2 = 0?$$
1. $\frac{1 + \sqrt{17}}{4}$ 3. $\frac{-1 - \sqrt{17}}{4}$

- 2. $\frac{1-\sqrt{17}}{4}$ 4. Both 1 and 2 above

10-35. A quadratic equation having real roots may be solved by which of the following methods?

- 1. Completion of the square and graphing
- 2. Completion of the square and factor-
- 3. The quadratic formula and graphing
- 4. All of the above

10-36. In order to graph the expression $2x^2 + 4x + 3$, it is first necessary to

- 1. divide the expression by x^2
- 2. subtract 3 from the expression
- 3. divide the expression by 24
- 4. let $2x^2 + 4x + 3$ equal a second variable

10-37. The roots of $ax^2 + bx + c = 0$ lie on the graph of the equation

- $y = ax^2 + bx + c$ at the points where
- 1. x = y
- 2. the graph has a maximum or minimum
- 3. the graph crosses the x-axis
- 4. the graph crosses the y-axis

10-38. Which of the following statements describes the curve of the equation

$$y = -4(3x + 1) - 5x^2$$
?

- 1. The curve opens upward and crosses the x-axis at 2 points to the left of the y-axis.
- 2. The curve opens upward and crosses the x-axis at 2 points to the right of the y-axis.
- 3. The curve opens downward and crosses the x-axis at 2 points to the left of the y-axis.
- 4. The curve opens downward and crosses the x-axis at 2 points to the right of the y-axis.

10-39. When the value of a in the quadratic

$$y = ax^2 + bx + c$$

is negative, the parabola formed by graphing has a minimum value.

● In answering items 10-40 through 10-42, refer to pages 174 and 175 of the text and the following information.

The relationship between the time of flight (in seconds) and the altitude (in feet) of a projectile is given approximately by the quadratic formula

$$a = vt - 16t^2$$

where v is the muzzle velocity of the projectile. Assuming that a gun having a muzzle velocity of 400 ft per second is fired, the formula for altitude becomes

$$a = 400t - 16t^2$$

- 10-40. How long after the gun is fired will the projectile hit a surface target?
 - 1. 20 sec
 - 2. 25 sec
 - 3. 30 sec
 - 4. 35 sec
- 10-41. The negative coefficient of the t² term of the formula indicates that the projectile will have a
 - 1. Maximum altitude
 - 2. Minimum altitude
 - 3. Constantly decreasing altitude
 - 4. Constantly decreasing speed
- 10-42. What will be the maximum altitude reached by the projectile?
 - 1. 750 ft
 - 2. 1,500 ft
 - 3. 1,750 ft
 - 4. 2,500 ft
- 10-43. What is the smallest value that y can have if $y = x^2 + 10x + 32$?
 - 1. -3
 - 2. 1
 - 3. 5
 - 4. 7
- 10-44. What is the x-coordinate of the point on the graph of the equation

$$y = 3x^2 - 2x + 17$$

that is closest to the x-axis?

- 1. $\frac{1}{4}$
- 3. $\frac{2}{3}$
- 2. $\frac{1}{3}$
- 4. $\frac{3}{4}$

- 10-45. The general form of the quadratic equation has imaginary roots whenever
 - 1. b2 is less than 4ac
 - 2. b^2 is greater than 4ac
 - 3. 4ac is less than zero
 - 4. 4ac is greater than zero
- 10-46. What is the other root of a quadratic equation when one of its roots is $2 + i\sqrt{3}$?
 - 1. -2 + 3i
 - 2. $2 i\sqrt{3}$
 - 3. $2 i\sqrt{-3}$
 - 4. $-2 \sqrt{-3}$
 - 10-47. Which of the following statements describes the curve of a second degree equation with a discriminant that is equal to zero and an x² term coefficient that is positive?
 - The curve reaches a maximum below the x-axis.
 - The curve reaches a maximum on the x-axis.
 - The curve reaches a minimum above the x-axis.
 - 4. The curve reaches a minimum on the
 - 10-48. A quadratic equation that can be separated into two identical factors always has a discriminant that is
 - 1. less than zero
 - 2. equal to zero
 - 3. greater than zero
 - 4. not a perfect square
 - 10-49. Which of the following sets of coefficients will give the equation

$$ax^2 + bx + c = 0$$

roots that are rational, unequal, and that do not contain an imaginary term?

- 1. a = 2, b = 9, c = 7
- 2. a = -2, b = 2, c = 8
- 3. a = 4, b = 6, c = 5
- 4. a = 6, b = -3, c = -1
- 10-50. The roots of $x^2 + 4x + 4 = 0$ are
 - 1. equal
 - 2. unequal
 - positive
 - 4. imaginary
- 10-51. The roots of the quadratic equation

$$x^2 + x + 1 = 0$$

- are
- 1. real
- 2. equal
- rational
- 4. imaginary

Figure 10A.--Graph of four equations.

- In answering 10-52 and 10-53, refer to figure 10A.
- Which curve is the graph of an equation 10-52. that has a double root?

- 10-53. Which graph is the graph of an equation that has zero as one of its roots?
 - Α
- 3. C
- 4. D
- How many points do the x-axis and the 10-54. graph of the equation

$$y = ax^2 + bx + c$$

have in common when

$$b^2 = 4ac$$
?

- 1. None
- 3. Two
- 2. One
- 4. An infinite number
- 10-55. How many points, if any, do the x-axis and the graph of a quadratic equation have in common when the discriminant of the equation is less than zero?
 - 1. None
- 3. Two
- 2. One
- 4. An infinite number
- Which of the following is a line segment? 10-56.
- 10-57. A part BC of the circumference of a circle is designated as
 - 1. broken line BC
- 3. arc BC
- 2. dashed line BC
- 4. line BC

- 10-58. It two lines intersect and form four equal angles, the lines are said to be
 - 1. oblique
- concurrent
- 2. parallel
- 4. perpendicular
- An acute angle may be defined as an angle 10-59. of
 - 1. 90 degrees
- 3. less than 90 degrees
- 2. 180 degrees
- 4. more than 90 degrees
- 10-60. A straight angle is an angle of
 - 1. 90 degrees 2. 180 degrees
- 3. less than 180 degrees
- 4. more than 180 degrees
- In figure 17-6 in your textbook, which of 10-61. the following angles are called vertical angles?
 - 1. 1 and 2
- 3. 2 and 3
- 2. 1 and 3
- 4. 3 and 4
- Which of the following angles are comple-10-62. mentary?
 - 1. 43 degrees and 47 degrees
 - 2. 60 degrees and 60 degrees
 - 3. 90 degrees and 30 degrees
 - 4. 100 degrees and 80 degrees
- 10-63. Which angle has a value twice its own supplement?
 - 1. 60 degrees
- 3. 100 degrees
- 2. 80 degrees
- 4. 120 degrees
- A square cannot be classified as a 10-64. polygon because it only has four equal angles.
- Which of the following is not a part of 10-65. a triangle?
 - 1. Arc
- 3. Base
- 2. Apex
- 4. Vertex
- The altitude of any triangle, when drawn, 10-66. will always lie inside the triangle.
- What is the area of a triangle whose 10-67. base is 2 feet and whose height is 8 inches?
 - 1. 8 sq ft
- 3. 96 sq in
- 2. 16 sq ft
- 4. 192 sq in

Figure 10B

● In answering item 10-68 refer to figure 10B. [Hint: Area of triangle ABC + area of triangle BCD = area of triangle ACD]

10-68. What is the area of triangle ABC?

- 1. 16 sq in.
- 2. 20 sq in.
- 3. 36 sq in.
- 4. 72 sq in.

10-69. When a triangle has sides of 15, 20, and 25 units, it is classified as which type?

- 1. Right
- 2. Acute
- 3. Isosceles
- 4. Equilateral

- 10-70. If two sides of a triangle are 8 units each, the triangle is classified as
 - 1. right
 - 2. scalene
 - 3. isosceles
 - 4. equilateral
- 10-71. An equilateral triangle is also an isosceles triangle.
- 10-72. A right triangle with a 10-degree angle also includes
 - 1. an obtuse angle
 - 2. a supplementary angle
 - 3. a 60 degree angle
 - 4. an 80 degree angle
- 10-73. If a diagonal of any quadrilateral is drawn, it always divides the quadrilateral into two
 - 1. equal triangles
 - 2. triangles having equal bases
 - 3. triangles neither of which is isosceles
 - 4. triangles neither of which is equilateral
- 10-74. A quadrilateral is a special example of a parallelogram.
- 10-75. Rhombus is the name given to a parallelogram whose four sides have equal length.